# Power For the 21st Century

Capstone Event October 29, 2012



# Tonight's objectives

- Review P21 and SROI processes
- Review community education
- SROI analysis
- Community engagement
- Staff comments on power supply planning
- Review Recommendations
- Interactive activity; panel response system



### The P21 Process

- Power for the 21<sup>st</sup> Century (P21) was created as a means of a broad-based community engagement effort
- The purpose of this engagement is to
  - inform the community about critical decisions and issues the community faces in its future
  - solicit the input of critical stakeholder groups in reaching answers.
- Community engagement had largely been from narrowly focused interest groups, which was not necessarily representative of the broader community's thinking



# EXTENSIVE COMMUNITY EDUCATION AND OUTREACH



# **Community Education Efforts**

- Education series ran from October 6 December 13
  - Fuels Options
  - Generation Types
  - Regulations
  - District Heating
  - Transmission considerations
  - Energy Optimization & Conservation
  - World view of energy (John Doggett)



### Communication & Education Efforts

Began the week of September 11, 2011

- P21Decision.com website launched
- P21 press release
- P21 Facebook page set up; videos & content
- P21 Twitter account established
- YouTube account established











### Communication & Education Efforts

### (Continued)

- P21 website
  - Videos; community perspectives, SROI process, meetings
  - updates
  - Timeline
  - Public comments, Q&A results
- Newspaper
  - Ads (online and print), Op-Eds, stories, press releases,
  - Mailings
  - Direct mail pieces, bill stuffers, business customer letters,
     Early Bird Breakfast take-away



### Communication & Education Efforts

### (Continued)

- Meetings
  - Key Accounts meetings
  - One on one customer meetings
  - Chamber of Commerce Early Bird Breakfast (John Doggett)
  - Community group meetings (Riverview Group, Chamber of Commerce, DDA)
- Radio ads/spots/e-blasts on WHTC, The Van, JQ99
- Billboards
- MacMedia aired educational series



### **ROBUST SROI ANALYSIS**



### The SROI Process

- SROI Public Hearings; Sept. 4 & 5, 2012
  - Hearing held Tuesday and Wednesday from 5-7pm.
  - Comments read into the record by customers and members of the greater community
  - Meetings were recorded and posted on P21 website
- SROI Q&A; Sept. 24, 2012
  - Dozens of questions were asked and answered at a 2 ½ hour meeting.
     Staff stayed longer than the scheduled two hour meeting to ensure that all questions were answered.
  - The meeting was recorded and posted on P21 website.



### The SROI Process

- Engaged HDR; August, 2011
- Formed Risk Analysis Process (RAP) panel
  - HBPW Board Member, City Council, and SME's representing various community sectors including:
    - Government: Sustainability Committee, MACC
    - Education: Hope College, Holland Public Schools
    - Businesses such as: large industrial customers, Chamber of Commerce, DDA, Lakeshore Advantage
    - Special interest groups such as: environmental (WMEAC), land use (Riverview Group), League of Women Voters, Historic District, Young Professionals
  - Met in September and November, 2011
  - Mutually agreed to parameters for analysis such as:
    - Items of value to the community
    - Issues that can/cannot be controlled by HBPW (pollution from coal transportation, fracking, mountain top mining etc.)
    - Range of costs etc.



### What is SROI?

#### Triple Bottom Line Decision Making Framework

It's best practice in Cost-Benefit Analysis and Financial Analysis over a project's entire life-cycle, augmented by:

- Accounting for uncertainty using state-of-the-art risk analysis techniques
- Engaging stakeholders directly to generate consensus and transparency





# The Triple-Bottom Line Framework

SROI adds to traditional financial analysis the monetized value of noncash benefits and externalities



# **SROI** Methodology

#### **A Four-Step Process**



### "SROI reveals the hidden value in projects."

David Lewis, PhD
Former Principal Economist at the US Congressional Budget Office
Author "Policy and Planning as a Public Choice: Mass Transit in the United States"



# S-Curve Diagram





### James De Young Station



- Unit 3 Retired in all cases
- Snowmelt system currently fed by U3/U4
- 46 MW Combined Capacity U4+U5
- No Capital Investment Retire U4 &U5 by 2016 per the CEP
- Invest \$28M Air Pollution Control Equipment, U4 Retires 2027, U5 Retires 2033 (Base Case)



### Renewable Generation Options



20MW Wind Farm



8MW Solar Photovoltaic



4MW Digester Gas CHP



22MW Biomass Conversion JDY - U5



#### New Solid Fueled Unit 10 at JDY

#### Circulating Fluidized-Bed (CFB) Boiler



70 MW Capacity

•50% Petroleum

Coke

•30% Biomass

•20% PRB Coal



### Natural Gas Fired Combined Cycle



2x1 LM2500 - 78MW 2x1 LM6000 - 114MW









### Natural Gas Fired Combined Heat and Power (CHP)



#### The Gas Turbine based Combined Heat & Power Cycle

Combined Heat & Power is the simultaneous production of Power and Heat from a single fuel source.

The Gas Turbine generates electricity to power the plant.

The hot exhaust gases are passed through a Waste Heat Recovery Boiler\*

The hot gases heat water which is supplied either as hot water or steam to the factory/facility processes.

LM2500 CHP - 30.5MW



Waste Heat Recovery Boilers are also known as Heat Recovery Steam Generators (HRSG)

# Benefit and Cost Impacts

- A range of impacts were identified by stakeholder group or "account"
- Key stakeholder accounts:
  - Holland BPW
  - Electricity User
  - Environmental
  - Economy
  - Community
- Some impacts are transfers
  - Quantified by account
  - But cancel out in NPV calculation



### Holland BPW Account

- Capital, EPC, O&M, Fuel, and Fixed Costs
- Retail Electricity Sales
- Interchange Purchases & Sales
- District Heating Costs & Recovery
- Snowmelt Costs & Recovery
- Retired JDY Value
- Reduced Biosolids Treatment Cost
- Capacity Purchases & Sales
- Renewable Energy Credit Purchases
   & Sales
- Site Remediation Cost





# **Electricity User Account**

- Savings due to District Heating
- Electricity Service Cost







### **Environmental Account**

- Criteria Air Contaminant Emissions
- Greenhouse Gas Emissions
- Additional Emission Savings due to District Heating







# **Economic Activity Account**

- Business Relocation Benefit
- Reduced Biomass Shipping Costs





# Community Account

- General Fund Transfer from HBPW
- Loss of Commercial Harbor Status
- Social Value of Parkland
- Landfilling of Tires
- Retired James De Young Land Value
- Snowmelt Service Cost



### **High-Level Outcomes:**

- The 3 scenarios with natural gas (e.g., A, B, G) provide the highest SROI
  - The largest benefit is reduced emissions
  - Electricity cost reductions significant too (>\$100M)
- Two individual impacts dominate the overall results:
  - Value of electricity service cost reduction
  - Value of emissions reductions



# High-Level Outcomes (cont'd):

- The scenario providing the greatest incremental value (<u>at the mean</u>) from both an FROI and SROI perspective relative to the base case is Scenario G
  - FROI ~\$250M
  - SROI ~\$575M
    - Range from about \$300M to \$800M
    - Range includes low, medium and high gas price
- Scenario G:
  - reduces both electricity costs and emissions
  - Increases Holland's competiveness
  - Provides district heating and snowmelt benefits



# High-Level Outcomes (cont'd):

- On a macro-level, district heating shows potential for significant cost savings
- Owning and operating electric generation is in the best interest of the City
- Investing in controls for the James De Young coal units may not be economic
- Location of new generation not necessary to be located on the waterfront



# Sustainable Return on Investment (\$M)





### Sustainable Return on Investment (SROI)





### Levelized Cost of Electricity





# SIGNIFICANT COMMUNITY ENGAGEMENT



# Post SROI Analysis Events

- Presented to various community groups
  - Riverview Group
  - MACC Policy Board
  - Downtown Development Authority
  - West Coast Chamber of Commerce Policy Committee
  - Haworth
  - HBPW Key Accounts Meeting (24 Companies)
- Public Comments received through P21 website
- Public Hearings on September 4 & 5
- Question and Answer Session on September 24



# WHAT WE'VE HEARD FROM THE COMMUNITY



### What Our Customers Said

- Embrace renewable energy, energy efficiency, and conservation (multiple comments)
- Conservation is far more cost effective and you should invest in that and efficiency before you invest in a new plant
- Move away from coal
- Move to natural gas if you must move away from coal
- Gas still has pollutants and contributes to global warming
- No fracking
- Include community members on all energy task forces; all meetings should be open to the public
- Consider potential for green job creation with renewables



## What Our Customers Said (cont.)

- You are rushing this decision
- This process is taking too long
- You and the city are sneaking these proposals through the system; public hearings occurred during vacation season
- You are over-building the gas plant
- You should diversify generation options
- You are not publicizing your efforts enough
- Variance to projected demand and electric market pricing won't be picked up by gas price contingencies risk-tests
- Appreciate the open approach
- Good job



# Key Accounts Meeting Review

- 24 Companies Represented
- Reviewed the SROI process and high level findings
- Used a response system to identify agreement with statements about the process and the staff recommendations
- 89% agree or strongly agree that the "combined recommendations regarding base load generation, location for the new resource, renewable energy agreements and the existing units at James De Young provide a comprehensive plan that will meet our community's future energy needs."



## Other Public Comments

- Extensive input from the Sierra Club and other outside organizations / individuals
  - Comments and answers to questions were summarized and published on the P21 website.



## Concern about amount of Natural Gas

|                            | Scenarios A&B | Scenario G    |
|----------------------------|---------------|---------------|
| Combined Cycle Size        | 78 MW         | 114 MW        |
| Combined Heat & Power Size | 30 MW         | 0 MW          |
| Total Gas Capacity         | 108 MW        | 114 MW        |
|                            |               |               |
| Combined Cycle Cost        | \$147 Million | \$182 Million |
| Combined Heat & Power Cost | \$ 60 Million | \$ 0 Million  |
| Total Gas Generation Cost  | \$207 Million | \$182 Million |

The amount of gas generation in all three scenarios is essentially the same. However, Scenario G costs \$25 Million less to build and has a higher energy efficiency for electric generation.



# Concern about Scenario G Generation Overbuild

|                          | Scenario A | Scenario B | Scenario G |
|--------------------------|------------|------------|------------|
| Combined Cycle           | 78 MW      | 78 MW      | 114 MW     |
| Combined Heat & Power    | 30 MW      | 30 MW      | 0 MW       |
| Biomass Conversion       | 0 MW       | 22 MW      | 0 MW       |
| Wind                     | 0 MW       | 20 MW      | 0 MW       |
| Bio-digester             | 0 MW       | 4 MW       | 0 MW       |
| Solar                    | 0 MW       | 8 MW       | 0 MW       |
| Total New                | 108 MW     | 162 MW     | 114 MW     |
| - Loss of James De Young | - 60 MW    | - 60 MW    | - 60 MW    |
| Net of Retirements       | 48 MW      | 102 MW     | 54 MW      |

In Scenario A and G, the HBPW experiences a capacity deficiency by 2029. In Scenario B, there is no deficiency through 2036.



## HBPW Commitment to Energy Efficiency

|               | EO Revenue   | EO Investments | KWh Goal   | kWh Savings |
|---------------|--------------|----------------|------------|-------------|
| 2009          | \$ 383,179   | \$ 412,865     | 3,089,387  | 3,252,003   |
| 2010          | \$ 542,435   | \$ 682,760     | 4,849,100  | 5,480,600   |
| 2011          | \$ 705,136   | \$ 917,544     | 6,476,661  | 7,762,398   |
| 2012 Budget   | \$ 943,248   | \$ 1,448,815   | 9,356,393  | TBD         |
| Total to Date | \$ 2,573,998 | \$ 3,461,984   | 23,771,541 |             |

Using an average home consumption of 10,000 kWh per year, HBPW's EO program in 2012 will save the equivalent energy use of over 900 homes

Through 2011, the HBPW invested \$382,000 (23.4%) more than revenue received in EO program investments and saved 2,079,853 (14.4%) more kWh than required. Equivalent to 200 homes annual usage.



## **HBPW Commitment to Renewable Energy**

- 20-year contracts with numerous landfill gas generation sources throughout lower Michigan
- Long-term biomass generation contract
- Current arrangements meet or exceed PA295 requirements through 2018
- Spent hundreds of thousands of dollars on two wind developments
- Finalizing two purchased power agreements with wind developers
  - One 10-year and one 20-year
  - Potential of up to 15 MW in each contract
  - Would exceed requirements well beyond 2030



## WHAT WE NEED TO CONSIDER



# Power Supply Planning Considerations

- Sustainability
- Diversity of fuel
- Diversity of location
- Land use
- Resource size
- Availability of market power supply
- Ability to bond project
- Rate impact
- Access to high voltage, fuel supply and water



# **Staff Recommendations**



#### Staff Recommendation - Base Load

- Pursue combined-cycle technology in a 2x1 configuration approximately 114 MW in size
  - Economy of scale
  - Operational efficiency
  - Additional heat available for district heating and snowmelt
  - Opportunities for collaboration with other municipals



#### Staff Recommendation – Location

- Preferred site would be other than the James
   De Young location
  - Constructability of site
  - Once-through cooling is not an option
  - Alternatives are closer to both the natural gas pipeline route and proposed district heating networks
  - Need to preserve access to high-voltage distribution and roads



#### Staff Recommendation – Renewables

- Finalize 10-year Power Purchase Agreement with E-ON Wildcat I for 15 MW of wind generation near Elwood, Indiana
  - Complements current portfolio of landfill gas and biomass resources
  - Excellent pricing without operational or development risk
  - Pay as power is received preserves capital for other investments



#### Staff Recommendation – Renewables

- Complete 20 year agreement with Exelon, Beebe Wind LLC, for approximately 17 MW of wind generation near Ithaca, Michigan
  - Pricing competitive with Wildcat I project
  - Dependent upon the extension of Production Tax
     Credits in their current form
  - Working to build a group of Michigan municipal entities to fully subscribe the development



## Staff Recommendation – JDY

- No immediate capital investments in control technology to meet upcoming regulations
  - Unit 5 (28MW) will need to stop burning coal in next
     3-4 years
  - Unit 3 (11 MW) and Unit 4 (22 MW)- Pending regulatory changes are being reconsidered by the EPA
  - Monitor regulations and technology improvements
  - Preserve \$4.5MM of value by utilizing natural gas capability for all units



# Staff Recommendation – Next Steps

- Engage services of Owner's Engineer
  - Begin preliminary engineering
  - Submit air quality permit
  - Begin major equipment procurement process
  - Develop project execution plan and RFP for design-build services
- Initiate site selection process for new unit
- Hire HT Engineering for gas pipeline design
- Procure fuel management services and begin hedge plan development for natural gas

